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Abstract

We study the fair division problem on divisible heterogeneous resources (the cake cutting problem)
with strategic agents, where each agent can manipulate his/her private valuation in order to receive a
better allocation. A (direct-revelation) mechanism takes agents’ reported valuations as input, and outputs
an allocation that satisfies a given fairness requirement. A natural and fundamental open problem, first
raised by Chen et al. [12] and subsequently raised by Procaccia [21], Aziz and Ye [4], Brânzei and Miltersen
[11], Menon and Larson [19], Bei et al. [6, 7], etc., is whether there exists a deterministic, truthful and
envy-free (or even proportional) cake cutting mechanism. In this paper, we resolve this open problem
by proving that there does not exist a deterministic, truthful and proportional cake cutting mechanism,
even in the special case where all of the followings hold:

• there are only two agents;

• each agent’s valuation is a piecewise-constant function;

• each agent is hungry: each agent has a strictly positive value on any part of the cake.

The impossibility result extends to the case where the mechanism is allowed to leave some part of the
cake unallocated.

To circumvent this impossibility result, we aim to design mechanisms that possess certain degree of
truthfulness. Motivated by the kind of truthfulness possessed by the classical I-cut-you-choose protocol,
we define a weaker notion of truthfulness: the risk-averse truthfulness. We show that the well-known
moving-knife procedure and Even-Paz algorithm do not have this truthful property. We propose a
mechanism that is risk-averse truthful and envy-free, and a mechanism that is risk-averse truthful and
proportional that always outputs allocations with connected pieces.

1 Introduction

The cake cutting problem studies the allocation of a piece of divisible heterogeneous resource to multiple
agents, normally with a given fairness requirement. The cake is a metaphor for divisible heterogeneous
resources, which is normally modeled as an interval [0, 1]. Different agents have different valuations on
different parts of the interval. Typically, each agent’s valuation is described by a value density function
f : [0, 1] → R≥0, and his/her value on a subset X ⊆ [0, 1] is given by the Riemann integral

∫

X
f(x)dx.

Starting with Thomson [24], the cake cutting problem has been widely studied by mathematicians, economists
and computer scientists. See the books Brams et al. [9], Robertson and Webb [22] and Part II of Brandt
et al. [10] and the survey Procaccia [21].

Two of the most widely studied fairness criteria are proportionality and envy-freeness. An allocation is
proportional if each agent believes (s)he receives a share with a value that is at least 1

n
fraction of the value

of the entire cake (where n is the number of the agents). An allocation is envy-free if each agent believes
(s)he receives a share that has weakly more value than the share allocated to each of the other agents (i.e.,
an agent does not envy any other agents). Formal definitions for the two notions are in Sect. 2. If we require
that the entire cake needs to be allocated (i.e., discarding some part of the cake is disallowed), an envy-free
allocation is always proportional. It is well-known that envy-free allocations always exist [8], even if we
require each agent must receive a connected interval [14]. In addition to the existences, the algorithm design
aspect has also been considered in a long history [13, 15, 23, 2, 3]. In particular, we know how to compute
a proportional allocation [13, 15] and an envy-free allocation [3] for any number of agents.
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However, a fundamental issue when deploying a certain cake cutting algorithm is that agents are self-
interested and may manipulate and misreport their valuations to the algorithm in order to get a better
allocation. This motivates the study of the cake-cutting problem from a game theory aspect, in particular,
a mechanism design aspect. Is there a truthful and fair cake cutting mechanism such that truth-telling is
each agent’s dominant strategy? This question was first proposed by Chen et al. [12].

To answer this question, we first need to address the following issue: how can we represent a value
density function succinctly? Two different approaches have been considered in the past literature. In the
first approach (e.g., [8, 22, 23, 16, 2, 3]), the mechanism communicates with the agents by a query model
called the Robertson-Webb query model, where the mechanism learns the valuation of each agent through a
sequence of queries that are of the following two types:

• Evali(x, y): ask agent i his/her value on the interval [x, y];

• Cuti(x, r): ask agent i for a point y where [x, y] is worth exactly r.

In the second approach (e.g., [20, 12, 5, 19, 6, 7]), the value density function is assumed to be piecewise-
constant. Piecewise-constant functions can approximate most natural real functions arbitrarily closely, and
it can be succinctly encoded. The mechanism then takes the n encoded value density functions as input,
and outputs an allocation. These mechanisms are called direct revelation mechanisms.

In the setting with the Robertson-Webb query model, the game agents are playing is an extensive-form
game, whereas, in the piecewise-constant valuation setting, this is a one-round game where all the agents
report their valuations simultaneously. Naturally, when truthfulness is concerned, agents in the first setting
have much more room for manipulation. Indeed, for the first setting, Kurokawa et al. [16] proves that there is
no truthful and envy-free mechanism that requires a bounded number of Robertson-Webb queries. A strong
impossibility result by Brânzei and Miltersen [11] shows that, for any truthful mechanism, there exists an
agent who receives a zero value. In particular, when there are only two agents, the only truthful mechanism
is essential the one that allocates the entire cake to a single agent.

For direct revelation mechanisms, Chen et al. [12] gives the first truthful envy-free cake cutting mechanism
that works when each agent’s valuation is piecewise-uniform, a special case of piecewise-constant valuations
with the additional assumption that each value density function takes value either 0 or 1. Chen et al. [12]
then proposes the following natural open problem.

Problem 1. Does there exists a (deterministic) truthful, envy-free (or even proportional) cake cutting
mechanism for piecewise-constant value density functions?

There are many partial progresses on this problem. Aziz and Ye [4] shows that there exists no truthful
mechanism that satisfies either one of the following properties:

• Proportional and Pareto-optimal;

• Robust-proportional and non-wasteful (non-wasteful means that no piece is allocated to an agent who
does not want it, a notion weaker than Pareto-optimality).

Menon and Larson [19] shows that there exists no truthful mechanism that is even approximately-proportional,
with the constraint that each agent must receive a connected piece. Bei et al. [6] shows that there exists no
truthful, proportional mechanism under any one of the following three settings:

• the mechanism is non-wasteful;

• the mechanism is position-oblivious (meaning that the allocation of a cake-part is based only on the
agents’ valuations of that part, and not on its relative position on the cake);

• agents report the value density functions sequentially, where an agent’s strategy can depend on the
reports of the previous agents.

On the positive side, the mechanism proposed by Chen et al. [12] for piecewise-uniform value density
functions is further studied by Maya and Nisan [18] and Li et al. [17]. Maya and Nisan [18] characterizes
truthful mechanisms and shows that the mechanism proposed by Chen et al. [12] is unique in some sense. Li
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et al. [17] shows that this mechanism also works in the setting where agents have externalities. Alijani et al.
[1] proposes some mechanisms that work for special cases of piecewise-uniform functions with small number
of cuts. Bei et al. [7] proposes a truthful envy-free mechanism for piecewise-uniform value density functions
that do not need the free-disposal assumption, an assumption made in the mechanism by Chen et al. [12].
As can be seen above, most positive results are regarding piecewise-uniform valuations.

All the mechanisms mentioned above are deterministic. If we allow randomized mechanisms, a simple
mechanism proposed by Mossel and Tamuz [20] is universal envy-free and truthful in expectation. However,
randomized mechanisms have many drawbacks. Firstly, agents can be risk-seeking or risk-averse, and may
have different views on a truthful-in-expectation randomized mechanisms. Secondly, agents may have concern
on the source of the randomness. It is costly to find a trustworthy random source. Agents receiving less
utility due to randomness may believe they have not been treated fairly.

Despite those above-mentioned progresses, Problem 1 remains open.

1.1 Our Results

As the main result of this paper, we resolve Problem 1 by proving that there does not exist a (deterministic)
truthful proportional cake cutting mechanism. This impossibility result can be extended to the setting where
there are only two agents, each agent has a strictly positive value on any part of the cake (we say that the
agents are hungry in this case), and the mechanism is allowed to leave some part of the cake unallocated.

To circumvent this impossibility result, we propose a weaker truthful notion called risk-averse truthful.
This is motivated by the truthful guarantee of the I-cut-you-choose protocol: the protocol works for two
agents; the first agent cuts the cake into two pieces (s)he believes to have equal value; the second agent
selects the piece with a higher value, and the remaining piece is given to the first agent. The truthfulness of
the second agent is apparent. For the first agent, (s)he has no incentive to manipulate without the knowledge
of the second agent’s valuation, for otherwise there is a risk for him/her to receive a piece less than a half
of the entire cake. Our risk-averse truthful notion captures the risk-averseness of the agents and the setting
where an agent does not know other agents’ valuations.

We show that those well-known algorithms, e.g., the moving-knife procedure [13] and the Even-Paz
algorithm [15], do not satisfy this truthful property. We then propose a mechanism that is risk-averse
truthful and envy-free, and a mechanism that is risk-averse truthful and proportional that always outputs
allocations with connected pieces.

2 Preliminary

The cake is modeled as the interval [0, 1], which is allocated to n agents. Each agent i has a value density
function fi : [0, 1] → R≥0 that describes his/her preference on the cake. A value density function fi is
piecewise-constant if [0, 1] can be partitioned into finitely many intervals, and fi is constant on each of
these intervals. We will assume agents’ value density functions are piecewise-constant throughout the paper,
although our result in Sect. 6 do not rely on this. Agent i is hungry if fi(x) > 0 for any x ∈ [0, 1]. Given a
subset X ⊆ [0, 1], agent i’s utility on X , denoted by vi(X), is given by

vi(X) =

∫

X

fi(x)dx.

An allocation (A1, . . . , An) is a collection of mutually disjoint subsets of [0, 1], where Ai is the subset
allocated to agent i. An allocation is entire if

⋃n

i=1 Ai = [0, 1]. Notice that an impossibility result without
the entire requirement is stronger than an impossibility result with this requirement. An allocation is
proportional if each agent receives his/her average share of the entire cake:

∀i : vi(Ai) ≥
1

n
vi([0, 1]).

An allocation is envy-free if each agent receive a portion that has weakly higher value than any portion
received by any other agent, based on his/her own valuation:

∀i, j : vi(Ai) ≥ vi(Aj).
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An entire envy-free allocation is always proportional. In the case with two agents, if an allocation is entire,
it is envy-free if and only if it is proportional. In Sect. 6, we consider a specific kind of allocations where
each agent needs to receive a connected piece of cake, i.e., each Ai is an interval.

A mechanism is a function M that maps n value density functions F = (f1, . . . , fn) to an allocation
(A1, . . . , An). Given M(F ) = (A1, . . . , An), we write Mi(F ) = Ai. That is, Mi(F ) outputs the share
allocated to agent i, given input F = (f1, . . . , fn). A mechanism is proportional/envy-free if it always
outputs a proportional/envy-free allocation with respect to the input F = (f1, . . . , fn). A mechanism is
entire if it always outputs entire allocations. In this paper, we consider only deterministic mechanisms.

A mechanism M is truthful if each agent’s dominant strategy is to report his/her true value density
function. That is, for each i ∈ [n], any (f1, . . . , fn) and any f ′

i ,

vi (Mi(f1, . . . , fn)) ≥ vi (Mi(f1, . . . , fi−1, f
′
i , fi+1, . . . , fn)) .

As a clarification, when proportionality/envy-freeness is concerned, a mechanism must output an alloca-
tion that is proportional/envy-free with respect to the reported value density functions ; when truthfulness is
concerned, we require each agent’s misreporting does not give this agent strictly more utility, and the utility
here is with respect to this agent’s true value density function.

3 Impossibility Result for Truthful Proportional Mechanism

In this section, we prove the following theorem.

Theorem 3.1. There does not exist a truthful proportional mechanism, even when all of the followings hold:

• there are two agents;

• each agent’s value density function is piecewise-constant;

• each agent is hungry: each fi satisfies fi(x) > 0 for any x ∈ [0, 1];

• the mechanism needs not to be entire.

We will prove Theorem 3.1 by contradiction. Suppose there exists a truthful proportional mechanism
M for two agents. For a description of the main idea behind the proof, we construct multiple cake cutting
instances, analyze the outputs of M on these instances, and prove that truthfulness and proportionality
cannot be both guaranteed on all these instances. In particular, we will construct six instances. For the
first five instances, we show that the outputs of M are unique. Based on the outputs for the first five
instances, we show that any allocation output byM for the sixth instance will violate either proportionality
or truthfulness. The six instances constructed are showin in Table 1.

We start with the simplest cake cutting instance.

Instance 1. F 1 = (f1
1 , f

1
2 ), where f1

1 (x) = 1 and f1
2 (x) = 1 for x ∈ [0, 1].

To ensure proportionality, we must have |M1(F
1)| = |M2(F

1)| = 1
2 . We will denote the allocation of

M1(F
1) by (X1, X2). X1 and X2 will be used multiple times in the definitions of other instances. It is

helpful to assume X1 = [0, 0.5] and X2 = (0.5, 1].

Definition 3.2. X1 = |M1(F
1)| and X2 = |M2(F

1)|.

In the instances constructed later, we let ε > 0 be a sufficiently small real number.
Next, we consider the following instance.

Instance 2. F 2 = (f2
1 , f

2
2 ), where f2

1 (x) = 1 for x ∈ [0, 1] and

f2
2 (x) =

{

ε x ∈ X1

1 x ∈ X2
.

The following proposition shows that the only possible allocation output byM for Instance 2 is (X1, X2).
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Instance Allocation

0 1

1

X1 X2

M(F 1) = (X1, X2)

0 1

1

X1 X2

M(F 2) = (X1, X2)

0 1

1

X11 X12 X21 X22

M(F 3) = (X11 ∪X21, X12 ∪X22)

0 1

1

X11 X12 X21 X22

M(F 4) = (X11 ∪X21, X12 ∪X22)

0 1

1

X11 X12 X21 X22

M(F 5) = (X1, X2)

0 1

1

X11 X12 X21 X22

See Sect. 3.1

Table 1: Instances constructed for the proof of Theorem 3.1 and the corresponding allocations given byM.
The value density for agent 1 is shown in solid lines, and the value density for agent 2 is shown in dashed
lines.
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Proposition 3.3. M(F 2) = (X1, X2).

Proof. Firstly, we must have |M2(F
2)| ≤ 1

2 . Otherwise, agent 1 will receive a subset of length strictly less
than 1/2. Since agent 1’s valuation is uniform on [0, 1],M is not proportional.

Secondly, we must have X2 ⊆M2(F
2). Suppose agent 2 does not receive all of X2, i.e., |X2∩M2(F

2)| <
1
2 . Given that |M2(F

2)| ≤ 1
2 , we have

v2
(

M2(F
2)
)

= v2
(

X1 ∩M2(F
2)
)

+v2
(

X2 ∩M2(F
2)
)

≤ ε ·

(

1

2
− |X2 ∩M2(F

2)|

)

+1 · |X2∩M2(F
2)| <

1

2
.

On the other hand, if agent 2 misreports his/her value density function to f1
2 (instead of his/her true value

density function f2
2 ), the mechanism receives input (f2

1 , f
1
2 ), which becomes Instance 1 since f1

1 = f2
1 . In

this case the allocation output is (X1, X2), and agent 2’s total value, in terms of his true valuation f2
2 , is

1
2 .

Therefore, agent 2 can receive more value by misreporting his/her value density function, andM cannot be
truthful.

Putting together, we have X2 ⊆M2(F
2) and |M2(F

2)| ≤ 1
2 , which impliesM2(F

2) = X2. Agent 1 will
then receive the remaining part of the cake which is just enough to guarantee proportionality: M1(F

2) =
X1.

The next instance we consider is slightly more complicated.

Instance 3. F 3 = (f3
1 , f

3
2 ), where

f3
1 (x) =

{

0.5 x ∈ X1

1 x ∈ X2
and f3

2 (x) =

{

ε x ∈ X1

1 x ∈ X2
.

The following proposition shows that agent 1’s allocation is exactly the union of half of X1 and half of
X2.

Proposition 3.4. |M1(F
3) ∩X1| = |M1(F

3) ∩X2| = |M2(F
3) ∩X1| = |M2(F

3) ∩X2| =
1
4 .

We provide a brief intuition behind the proof first. Firstly, agent 1 cannot receive a subset of length more
than 0.5. Otherwise, in Instance 2, agent 1 will misreport his value density function from f2

1 to f3
1 , which is

more beneficial to agent 1 (as f2
1 is uniform and agent 1 receives a larger length by misreporting).

Secondly, agent 1 cannot receive less than half of X2. If agent 1 receives less than half of X2 by a length
of x, agent 1 needs to receive more than half of X1 by a length of at least 2x to guarantee proportionality.
This will make the total length received by agent 1 more than 0.5.

Thirdly, agent 1 cannot receive more than half of X2. If agent 1 receives more than half of X2, agent
2, having significantly less value on X1, will have to receive a length on X1 that is significantly longer than
half of X1. This will destroy the proportionality of agent 1 for that agent 2 has already taken too much.

Finally, having shown that agent 1 must receive exactly half of X2, the proportionality of agent 1 and
the proven fact that agent 1’s received total length is at most 0.5 imply that agent 1 has to receive exactly
half of X1.

Proof of Proposition 3.4. Firstly, we must have |M1(F
3)| ≤ 1

2 . Suppose this is not the case: |M1(F
3)| > 1

2 .
We show thatM cannot be truthful. Consider Instance 2 where agent 1’s value density function is uniform.
In Instance 2, if agent 1 misreports his/her value density function to f3

1 , the mechanismM will see an input
that is exactly the same as F 3 (notice f2

2 = f3
2 ), and agent 1 will receive a subset with length strictly more

than 1
2 . However, we have seen in Proposition 3.3 that agent 1 will receive a subset with length exactly 1

2 if
(s)he reports truthfully. Since agent 1’s true valuation is uniform, agent 1 will benefit from this misreporting.

Let |M1(F
3) ∩X2| =

1
4 + x where x ∈ [− 1

4 ,
1
4 ]. We aim to show that x = 0. Agent 1’s total utility on

[0, 1] is
∫ 1

0 f3
1 (x)dx = 3

4 . To guarantee proportionality, we must have

v1
(

M1(F
3)
)

= v1
(

M1(F
3) ∩X1

)

+ v1
(

M1(F
3) ∩X2

)

= 0.5 ·
∣

∣M1(F
3) ∩X1

∣

∣+ 1 ·

(

1

4
+ x

)

≥
3

8
. (1)

By rearranging (1), we have |M1(F
3)∩X1| ≥

1
4 − 2x. The total length agent 1 receives is then |M1(F

3)| =
|M1(F

3)∩X1|+ |M1(F
3)∩X2| ≥

1
2 −x. Since we have seen |M1(F

3)| ≤ 1
2 at the beginning, we have x ≥ 0.
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On the other hand, since |M1(F
3)∩X2| =

1
4+x, we have |M2(F

3)∩X2| ≤
1
4−x. Since v2([0, 1]) =

1
2+

1
2ε

and v2(M2(F
3) ∩X2) = 1 · |M2(F

3) ∩X2| ≤
1
4 − x, to guarantee proportionality for agent 2, we must have

v2(M2(F
3) ∩ X1) ≥

1
4ε + x. Therefore, |M2(F

3) ∩ X1| ≥
1
4 + x

ε
, which implies |M1(F

3) ∩ X1| ≤
1
4 −

x
ε
.

Substituting this into (1), we have

0.5 ·

(

1

4
−

x

ε

)

+

(

1

4
+ x

)

≥
3

8
,

which implies x ≤ 0 if ε is sufficiently small.
Therefore, x = 0, and we have |M1(F

3) ∩ X2| =
1
4 . Since agent 1 receives exactly length 1

4 on X2, to
guarantee proportionality, agent 1 must receive at least length 1

4 on X1. To guarantee |M1(F
3)| ≤ 1

2 , agent
1 must receive at most length 1

4 on X1. Therefore, we have |M1(F
3) ∩X1| =

1
4 .

Finally, agent 2 must receive the remaining part of the cake to guarante proportionality.

We will define four subsets X11, X12, X21, X22 of [0, 1] that will be used for constructing other instances
later.

Definition 3.5. X11 = |M1(F
3)∩X1|, X12 = |M2(F

3)∩X1|, X21 = |M1(F
3)∩X2| and X22 = |M2(F

3)∩
X2|.

Proposition 3.4 implies |X11| = |X12| = |X21| = |X22| =
1
4 . It is helpful for the readers to assume

X11 = [0, 0.25], X12 = (0.25, 0.5], X21 = (0.5, 0.75] and X22 = (0.75, 1].

Instance 4. F 4 = (f4
1 , f

4
2 ), where

f4
1 (x) =















1 x ∈ X11

ε x ∈ X12

2ε x ∈ X21

ε x ∈ X22

and f4
2 (x) =

{

ε x ∈ X1

1 x ∈ X2
.

We will show thatM(F 3) andM(F 4) output the same allocation.

Proposition 3.6. M1(F
4) = X11 ∪X21 andM2(F

4) = X12 ∪X22.

Proof. Noticing that f2
2 = f3

2 = f4
2 , for the same reason in the proof of Proposition 3.4, we must have

|M1(F
4)| ≤ 1

2 . Otherwise, agent 1 in Instance 2 will misreport his/her true value density function f2
1 to f4

1 .
On the other hand, if agent 1 misreports his/her true value density function f4

1 to f3
1 , the mechanismM

will see the same input as F 3 and allocate X11∪X21 to agent 1. With respect to agent 1’s true valuation f4
1 ,

this is worth 1
4 + ε

2 . To guarantee truthfulness, agent 1 must receive a value of at least 1
4 + ε

2 onM1(F
4):

v1(M1(F
4)) ≥ 1

4 + ε
2 .

Given that agent 1 can receive a subset of length at most 1
2 , the maximum value agent 1 can receive is

1
4 +

ε
2 , by receiving the two subsets X11 and X21 that are most valuable to agent 1. Therefore, |M1(F

4)| ≤ 1
2

and v1(M1(F
4)) ≥ 1

4 + ε
2 implyM1(F

4) = X11 ∪X21.
Finally, to guarantee proportionality, agent 2 must receive the remaining part of the cake.

Instance 5. F 5 = (f5
1 , f

5
2 ), where f5

1 (x) = 1 for x ∈ [0, 1] and

f5
2 (x) =







1− ε x ∈ X11

ε x ∈ X12

1 x ∈ X2

.

We show that there is only one possible output forM(F 5) that guarantee both truthfulness and propor-
tionality, withM(F 5) =M(F 1) =M(F 2).

Proposition 3.7. M1(F
5) = X1 and M2(F

5) = X2.

7



Proof. Firstly, we must have |M1(F
5)| ≥ 1

2 to guarantee proportionality for agent 1. Therefore, |M2(F
5)| ≤

1
2 . Secondly, if agent 2 misreport his/her value density function to f2

2 , the mechanismM will see an input
exactly the same as F 2, and will allocate X2 to agent 2. This is worth 1

2 with respect to agent 2’s true
valuation f5

2 . Therefore, we must have v2(M2(F
5)) ≥ 1

2 , for otherwise agent 2 will misreport his/her value
density function to f2

2 . Given that agent 2 can receive a length of at most 1
2 , the maximum value (s)he

can receive is 1
2 , by receiving X2 that is most valuable to agent 2. Therefore,M2(F5) = X2. To guarantee

proportionality for agent 1, we must also haveM1(F
5) = X1.

Notice that, although we do not require entire allocations, the proportionality and truthfulness constraints
make the output allocations ofM for the first five instances entire.

Finally, we will consider our last instance below, and show thatM cannot be both truthful and propor-
tional for any allocation it outputs.

Instance 6. F 6 = (f6
1 , f

6
2 ), where

f6
1 (x) =















1 x ∈ X11

ε x ∈ X12

2ε x ∈ X21

ε x ∈ X22

and f6
2 (x) =







1− ε x ∈ X11

ε x ∈ X12

1 x ∈ X2

.

We will analyze this instance in the following sub-section.

3.1 Analysis of M(F 6)

We show thatM cannot output an allocation for Instance 6 that guarantees both truthfulness and propor-
tionality. This will gives us a contradiction, and proves Theorem 3.1. To show this, we begin by proving
three propositions, and then show that they cannot be simultaneously satisfied.

Proposition 3.8. |M2(F
6) ∩X2| ≤

1
4 + 1

4ε.

Proof. Suppose this is not the case: |M2(F
6) ∩X2| >

1
4 + 1

4ε. Consider Instance 4. By Proposition 3.6, we
haveM2(F

4) = X12∪X22, and agent 2 can receive value 1
4 +

1
4ε (with respect to f4

2 ). By misreporting from
f4
2 to f6

2 , the mechanismM will see input F 6 and allocateM2(F
6) to agent 2 with |M2(F

6)∩X2| >
1
4 +

1
4ε.

With respect to agent 2’s true value density function f4
2 in Instance 4, this is worth more than 1

4 + 1
4ε.

Therefore,M cannot be truthful.

Proposition 3.9. v1(M1(F
6)) ≥ 1

4 + 1
4ε with respect to f6

1 .

Proof. Suppose agent 1 misreports his/her true value density function f6
1 to f5

1 . The mechanismM will see
input F 5, which will allocate X1 to agent 1 by Proposition 3.7. This is worth 1

4 + 1
4ε to agent 1. Therefore,

to guarantee truthfulness, we must have v1(M1(F
6)) ≥ 1

4 + 1
4ε.

Proposition 3.10. v2(M2(F
6)) ≥ 3

8 with respect to f6
2 .

Proof. We have v2([0, 1]) =
1
4 ((1 − ε) + ε) + 1

2 × 1 = 3
4 . The proposition follows by the proportionality of

agent 2.

We first give an intuitive argument to show that Proposition 3.8, 3.9 and 3.10 cannot be all satisfied.
In F 6, agent 2 has a value equals to or approximately equals to 1 on each of the three segments X11, X21

and X22 and has a negligible value on X12. Proposition 3.8 indicates that (s)he can receive at most (a little
bit more than) half of X21 ∪X22. To guarantee proportionality (indicated by Proposition 3.10), (s)he must
receive approximately half of X11. On the other hand, by our construction of f6

1 , it is easy to see that
Proposition 3.9 indicates that almost entire X11 needs to be given to agent 1. This gives a contradiction.

Formally, Proposition 3.8 implies v2(M2(F
6)∩X2) ≤

1
4+

1
4ε. Proposition 3.10 then indicates v2(M2(F

6)∩
X1) ≥

1
8 −

1
4ε. Even if the entire X12 is allocated to agent 2 (which is worth 1

4ε), we still have

∣

∣M2(F
6) ∩X11

∣

∣ ≥
1
8 −

1
4ε−

1
4ε

1− ε
=

1− 4ε

8− 8ε
.
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For agent 1, we must then have

∣

∣M1(F
6) ∩X11

∣

∣ ≤
1

4
−

1− 4ε

8− 8ε
=

1 + 2ε

8− 8ε
.

To find an upper bound for v1(M1(F
6)), suppose agent 1 receives all of X12, X21 and X22. Even in this

case, we have the following upper bound for v1(M1(F
6)):

v1(M1(F
6)) ≤

1 + 2ε

8− 8ε
· 1 +

1

4
· ε+

1

4
· 2ε+

1

4
· ε =

1 + 2ε

8− 8ε
+ ε.

Taking ε→ 0, the limit of the above upper bound is 1
8 . Thus, v1(M1(F

6)) < 1
4 +

1
4ε for sufficiently small ε,

and Proposition 3.9 cannot be satisfied.

4 On Weaker Truthful Guarantees, Risk-Averse Truthfulness

We have seen in the previous section that standard dominant strategy truthfulness cannot be guaranteed if we
want a proportional mechanism. Proportionality is one of the most basic criteria for fairness, and requiring
each agent receiving at least an average share can be considered as a minimum fairness requirement in many
applications. Therefore, we do not seek to relax this assumption in this paper. On the other hand, we will
consider weaker truthful criteria.

A common truthful criteria is to require that the truth-telling profile form a Nash Equilibrium. In many
applications, this is a significant weaker guarantee than dominant strategy truthfulness. However, in our
cake cutting case, this truthful criteria is equivalent to the dominant strategy truthfulness, as the following
theorem shows.

Theorem 4.1. If a mechanism M satisfies that agents’ strategies of truthfully reporting their value density
functions form a Nash equilibrium, thenM is (dominant strategy) truthful.

Proof. Suppose M satisfying this property is not dominant strategy truthful. Given a valuation profile
(f1, . . . , fn), there must exist an agent i and n− 1 value density functions f ′

1, . . . , f
′
i−1, f

′
i+1, . . . , f

′
n reported

by the other n−1 agents, such that reporting certain f ′
i is more beneficial for agent i than truthfully reporting

fi. Now, consider a different valuation profile (f ′
1, . . . , f

′
i−1, fi, f

′
i+1, . . . , f

′
n). In this new profile, for each

j 6= i, the function f ′
j , being the reported function in the previous case, becomes the true valuation for agent

j. In this new setting, if the remaining n − 1 agents truthfully report their value density functions, which
are f ′

1, . . . , f
′
i−1, f

′
i+1, . . . , f

′
n, agent i’s best response is to report f ′

i instead of his/her true valuation fi (as
we have seen in the first setting). This indicates that truth-telling is not a Nash equilibrium

Even we do not have any progress on many standard truthful guarantees in game theory, there are still
mechanisms that can achieve “certain degree of truthfulness” in practice. Most notably, the I-cut-you-choose
protocol achieves some kind of truthfulness. The protocol works for proportional/envy-free cake cutting with
two agents: agent 1 find a point x such that v1([0, x]) = v1([x, 1]); agent 2 is allocated one of [0, x] and [x, 1]
that is more valuable to him/her, and the other piece is allocated to agent 1. It is easy to see that agent 2’s
dominant strategy is truth-telling: (s)he has no control on the position of x, and truth-telling can ensure
(s)he gets a piece with a larger value. On the other hand, although it is not a dominant strategy for agent 1
to tell the truth, agent 1 still does not have incentive to lie in the case (s)he has no knowledge on agent 2’s
valuation. If (s)he reports a value density function that results in a different position of x, there is always
a risk that (s)he will receive a piece with a value less than 1/2 of the entire cake (i.e., less than the value
guaranteed by proportionality).

There are two reasons behind agent 1’s truth-telling incentive. Firstly, as mentioned, (s)he does not have
prior knowledge on agent 2’s valuations. Secondly, (s)he is a risk-averse agent: whenever there is a risk of
receiving a value that does not meet the minimum proportional requirement, (s)he prefers to avoid the risk.

Motivated by this example, we define and consider a new truthful criterion: the risk-averse truthfulness.

Definition 4.2. A mechanismM is risk-averse truthful if, for each agent i with value density function fi
and for any f ′

i , either one of the following holds:
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1. for any f1, . . . , fi−1, fi+1, . . . , fn,

vi(Mi(f1, . . . , fi−1, fi, fi+1, . . . , fn)) ≥ vi(Mi(f1, . . . , fi−1, f
′
i , fi+1, . . . , fn));

2. there exist f1, . . . , fi−1, fi+1, . . . , fn such that vi(Mi(f1, . . . , fi−1, f
′
i , fi+1, . . . , fn)) <

1
n
vi([0, 1]).

In other words, a mechanism is risk-averse truthful if either an agent’s misreporting is non-beneficial,
or the misreporting can potentially cause the agent receiving a piece with a value that is less than his/her
proportional value.

We also define a weaker notion of risk-averse truthfulness, which, in the case where agent’s misreporting
may be beneficial, the misreporting can also make the agent receive less value than what (s)he will receive
when (s)he is truth-telling.

Definition 4.3. A mechanismM is weakly risk-averse truthful if, for each agent i with value density function
fi and for any f ′

i , either one of the following holds:

1. for any f1, . . . , fi−1, fi+1, . . . , fn,

vi(Mi(f1, . . . , fi−1, fi, fi+1, . . . , fn)) ≥ vi(Mi(f1, . . . , fi−1, f
′
i , fi+1, . . . , fn));

2. there exist f1, . . . , fi−1, fi+1, . . . , fn such that

vi(Mi(f1, . . . , fi−1, f
′
i , fi+1, . . . , fn)) < vi(Mi(f1, . . . , fi−1, fi, fi+1, . . . , fn)).

Notice that the adverb “weakly” describes the truthfulness, not the level of risk-averseness of the agents.
A weakly risk-averse truthful mechanism deals with agents that are strongly risk-averse: an agent will not
misreport if there is a chance (s)he will receive a value less than what (s)he will receive when truth-telling. A
risk-averse truthful mechanism deals with agents that are weakly risk-averse: an agent can afford to receive a
less value than what (s)he will receive when truth-telling, as long as this value is not below the proportional
value. Naturally, a mechanism that is incentive-compatible to agents with weaker risk-averseness achieves a
stronger truthful guarantee.

We remark that there is a common Bayesian model capturing the uncertainty of other agents’ private
information: define a probability distribution from which an agent believes that the other agents’ private
information is drawn (typically, this distribution depends on the information this agent has). However, in
our case, we do not see any natural way to define a probability distribution over piecewise constant functions.

5 Risk-Averse Truthful Envy-Free Mechanisms

There exists a simple algorithm that outputs envy-free allocations for n agents with piecewise-constant value
density functions. The algorithm first collects all the points of discontinuity from all agents. This partition
the cake into multiple intervals where each agent’s value density function is uniform on each of these intervals.
Then, the algorithm uniformly allocates each interval to all agents. The output allocation (A1, . . . , An) of
this algorithm satisfies vi(Aj) =

1
n
vi([0, 1]) (this property of an allocation is called exact), which is clearly

envy-free. However, to make the algorithm deterministic, we need to specify a left-to-right order of the n
agents on how each interval is allocated. The algorithm is described in Algorithm 1.

However, this algorithm is not even weakly risk-averse truthful.

Theorem 5.1. Algorithm 1 is not weakly risk-averse truthful.

Proof. Consider f1 such that f1(x) = 1 for x ∈ [0, 1
n
) and f1(x) = 0.5 for x ∈ [ 1

n
, 1], and consider

f ′
1(x) = 1 for x ∈ [0, 1]. Let M be the mechanism described by Algorithm 1. We aim to show that, 1)
there exist f2, . . . , fn such that v1(M1(f

′
1, f2, . . . , fn)) > v1(M1(f1, f2, . . . , fn)), and 2) for any f2, . . . , fn,

v1(M1(f
′
1, f2, . . . , fn)) ≥ v1(M1(f1, f2, . . . , fn)). That is, misreporting f1 to f ′

1 is sometimes more beneficial
and always no harm.

To show 1), consider f2(x) = · · · = fn(x) = 1 for x ∈ [0, 1]. If agent 1 truthfully reports f1, (s)he will
receive [0, 1

n2 )∪ [
1
n
, 1
n
+ n−1

n2 ), which is worth 1
n2 +

n−1
2n2 . If agent 1 reports f ′

1, the algorithm will see n uniform
functions, and allocation [0, 1

n
) to agent 1, which is worth 1

n
, which is more than 1

n2 + n−1
2n2 .
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Algorithm 1 A simple envy-free cake cutting algorithm

1: let Xi be the set of all points of discontinuity for fi
2: let X =

⋃n

i=1 Xi

3: let X = {x1, . . . , xm−1} be sorted by ascending order, and let x0 = 0, xm = 1
4: initialize Ai = ∅ for each i = 1, . . . , n
5: for each j = 0, 1, . . . ,m− 1:
6: for each agent i = 1, . . . , n: Ai ← Ai ∪

[

xj +
i−1
n

(xj+1 − xj), xj +
i
n
(xj+1 − xj)

)

;
7: endfor

8: return allocation (A1, . . . , An)

To show 2), consider any f2, . . . , fn. Suppose agent 1 reports f ′
1. Let X be defined in Step 2 and 3 of the

algorithm with respect to f ′
1, f2, . . . , fn. Agent 1 always receives the leftmost 1/n fraction of each [xj , xj+1).

Since f1 is monotonically decreasing, this is worth at least 1/n of v([xj , xj+1)), and agent 1 receives at least
his/her proportional share overall. On the other hand, if agent 1 truthfully reports f1, (s)he will always
receive exactly his/her proportional share, which is weakly less than what (s)he would receive by reporting
f ′
1.

The reason for Algorithm 1 not being weakly risk-averse truthful is that an agent can “delete” a point of
continuity to merge two intervals [xj , xj+1) and [xj+1, xj+2). This may be more beneficial if his/her value
is higher on [xj , xj+1) (or [xj+1, xj+2)) and (s)he knows that the algorithm will allocate a piece on the
very left (or very right) of [xj , xj+2). Therefore, it is the deterministic left-to-right order on each interval
that compromises the truthfulness. It is easy to randomize Algorithm 1 such that Algorithm 1 is truthful
in expectation, meaning that an expected utility optimizing agent’s dominant strategy is truth-telling. To
achieve this, we just need to partition each [xj , xj+1) evenly into n pieces, and allocate these n pieces to the
n agents by a random matching. This is essentially the algorithm proposed by Mossel and Tamuz [20].

We propose a deterministic risk-averse truthful envy-free mechanism that uses similar ideas. The mech-
anism is the same as Algorithm 1, except that the left-to-right order on each interval [xj , xj+1) depends on
the index j. Intuitively, if an agent tries to merges two intervals, (s)he do not know where exactly his/her
1/n fraction of [xj , xj+1) is, as (s)he does not know other agents’ value density functions. This makes it
possible that (s)he ends up receiving a portion where (s)he has less value on. The mechanism is shown in
Algorithm 2.

Algorithm 2 A risk-averse truthful envy-free cake cutting algorithm

1: let Xi be the set of all points of discontinuity for fi
2: let X =

⋃n

i=1 Xi

3: let X = {x1, . . . , xm−1} be sorted by ascending order, and let x0 = 0, xm = 1
4: initialize Ai = ∅ for each i = 1, . . . , n
5: for each j = 0, 1, . . . ,m− 1:

6: for each agent i: Ai ← Ai ∪
[

xj +
i+j−1 mod n

n
(xj+1 − xj), xj +

(i+j−1 mod n)+1
n

(xj+1 − xj)
)

;

7: endfor

8: return allocation (A1, . . . , An)

Theorem 5.2. Algorithm 2 is risk-averse truthful and envy-free.

Proof. The envy-freeness is trivial. We will focus on risk-averse truthfulness.
We focus on agent 1 without loss of generality. Let f1 be agent 1’s true value density function. Consider

an arbitrarily f ′
1 that agent 1 reports. Let X1 and X ′

1 be the sets of all points of discontinuity for f1 and f ′
1

respectively.
Suppose X1 ⊆ X ′

1. It is easy to see that agent 1 will still get a value of 1
n
v1([0, 1]) by reporting f ′

1. This
is because any subdivision of an interval where agent 1 has an uniform value gives only smaller intervals each
of which agent 1 has an uniform value on. This kind of misreportings is captured by 1 of Definition 4.2.
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Suppose X1 6⊆ X ′
1. Pick an arbitrary t ∈ X1 \X ′

1. Assume without loss of generality that lim
x→t−

f(x) <

lim
x→t+

f(x). Consider a sufficiently small ε > 0 such that [t − ε, t + (n − 1)ε] do not contain any points in

X1∪X ′
1 \ {t}. We can construct f2, . . . , fn such that 1)

⋃n

i=2 Xi contains X1∪X ′
1∪{t− ε, t+(n− 1)ε} \ {t},

2)
⋃n

i=2 Xi do not intersect the open interval (t − ε, t + (n − 1)ε), and 3) t − ε is the j-th point from left
to right with j being a multiple of n. By our algorithm, agent 1 will receive [t − ε, t) on the j-th interval
[t − ε, t + (n − 1)ε), which is worth less than 1

n
v1([t − ε, t + (n − 1)ε)). Agent 1 will receive value exactly

1
n
v1([0, 1]\ [t−ε, t+(n−1)ε)) on the remaining part of the cake. Therefore, the overall value agent 1 receives

is below the proportional value. We have shown that this type of misreportings may cause agent 1’s received
value less than the proportional value, which corresponds to 2 of Definition 4.2.

6 Risk-Averse Truthful Proportional Mechanisms with Connected

Pieces

Since an entire envy-free allocation is always proportional and Algorithm 2 is entire, Algorithm 2 is risk-averse
truthful and proportional. In this section, we are looking for risk-averse truthful proportional mechanisms
that satisfy the connected pieces property. That is, we require that each agent must receive a connected
interval of the cake. Notice that this property is desirable in many applications, e.g., dividing a land.

There are many existing algorithms that output proportional allocations with connected pieces. Two
notable algorithms are the moving-knife procedure [13] and Even-Paz algorithm [15]. We will see in this
section that both algorithms are not risk-averse truthful. In particular, the moving-knife procedure is not
even weakly risk-averse truthful. We conclude this section by proposing a risk-averse truthful proportional
mechanism with connected pieces.

Moving-knife procedure Let ai =
1
n
vi([0, 1]) be agent i’s proportional value. The moving-knife proce-

dure marks for each agent i a point xi such that [0, xi) is worth exactly ai to agent i. Then, the algorithm
finds the smallest value xi∗ among x1, . . . , xn, and allocates [0, xi∗) to agent i∗. Next, for the remaining part
of the cake [xi∗ , 1], the algorithm marks for each of the n− 1 remaining agents a point x′

i such that [xi∗ , x
′
i)

is worth exactly ai to agent i. The algorithm then finds the smallest value xi† among those n− 1 x′
is, and

allocates [xi∗ , xi†) to agent i†. This is repeated until the (n− 1)-th agent is allocated an interval, and then
the last agent get the remaining part of the cake. It is easy to verify that each of the first n − 1 agents
receives an interval that is worth exactly his/her proportional value ai, while the last agent may receive more
than his/her proportional value.

Even-Paz algorithm Even-Paz algorithm is a divide-and-conquer-based algorithm. For each agent i,
Even-Paz algorithm finds a point xi such that vi([0, xi]) = ⌊n2 ⌋vi([0, 1]). It then find the median x∗ for
x1, . . . , xn. Let L be the set of agents i with xi < x∗ and R be the set of agents i with xi ≥ x∗. Since each
agent i in L believes vi([0, x

∗]) ≥ ⌊n2 ⌋vi([0, 1]) and there are ⌊n2 ⌋ agents in L, there exists an allocation of
[0, x∗] to agents in L such that each agent i receives at least his/her proportional value 1

n
vi([0, 1]). For the

similar reasons, there exists an allocation of (x∗, 1] to agents in R such that each agent i receives at least
his/her proportional value 1

n
vi([0, 1]). The algorithm then solves these two problems recursively. It is also

easy to prove that Even-Paz algorithm always outputs proportional allocations.

To show that both algorithms are not risk-averse truthful. We first define the following two value density
functions.

ℓ(n)(x) =







3
2 x ∈

[

0, 1
2n

)

1
2 x ∈

[

1
2n ,

1
n

)

1 x ∈
[

1
n
, 1
]

r(n)(x) =







1 x ∈
[

0, 1− 1
n

)

1
2 x ∈

[

1− 1
n
, 1− 1

2n

)

3
2 x ∈

[

1− 1
2n , 1

]

(2)

Notice that
∫ 1

0
ℓ(n)(x)dx =

∫ 1

0
r(n)(x)dx = 1. The following lemma shows that any allocation that is

proportional in either ℓ(n) or r(n) is also proportional in the uniform value density function.

Lemma 6.1. Let f(x) = 1 for x ∈ [0, 1]. For any interval I such that
∫

I
ℓ(n)(x)dx ≥ 1

n
, we have

∫

I
f(x)dx ≥

1
n
. For any interval I such that

∫

I
r(n)(x)dx ≥ 1

n
, we have

∫

I
f(x)dx ≥ 1

n
.
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Proof. We only prove the lemma for
∫

I
ℓ(n)(x)dx ≥ 1

n
, as the part for

∫

I
r(n)(x)dx ≥ 1

n
is similar. It is

straightforward to see that
∫

I
ℓ(n)(x)dx = 1

n
implies |I| ≥ 1

n
. In particular, |I| = 1

n
if the left endpoint

of I belongs to {0} ∪ [ 1
n
, 1 − 1

n
], and |I| > 1

n
if the left endpoint of I belongs to (0, 1

n
). For |I| ≥ 1

n
, we

have
∫

I
f(x)dx ≥ 1

n
. If

∫

I
ℓ(n)(x)dx > 1

n
, there exists I ′ ⊆ I such that

∫

I′ ℓ
(n)(x)dx = 1

n
. By our previous

analysis, |I ′| ≥ 1
n
. We have

∫

I
f(x)dx ≥

∫

I′ f(x)dx ≥
1
n
.

Theorem 6.2. The moving-knife procedure is not weakly risk-averse truthful.

Proof. Let f1(x) = 1 for x ∈ [0, 1] be the true value density function for agent 1. We show that agent 1
can misreport his/her value density function to f ′

1 = ℓ(n) that satisfies 1) there exists f2, . . . , fn such
that v1(M1(f

′
1, f2, . . . , fn)) > v1(M1(f1, f2, . . . , fn)), and 2) for any f2, . . . , fn, v1(M1(f

′
1, f2, . . . , fn)) ≥

v1(M1(f1, f2, . . . , fn)).
To see 1), suppose f2(x) = 1 for x ∈ [0, 1

n
] and f2(x) = 0 for x ∈ ( 1

n
, 1], and f3(x) = · · · = fn(x) = 0 for

x ∈ [0, 1
n
) and f3(x) = · · · = fn(x) = 1 for x ∈ [ 1

n
, 1]. In the moving-knife procedure, if agent 1 truthfully

reports f1, (s)he will be the second agent receiving an interval after agent 2 taking [0, 1
n2 ), and (s)he will

receive [ 1
n2 ,

1
n
+ 1

n2 ), which is worth 1
n
. If agent 1 reports f ′

1, (s)he will also be the second agent receiving
an interval after agent 2 taking [0, 1

n2 ), and (s)he will receive [ 1
n2 ,

1
n
+ 3

2n2 ) (by some simple calculations),
which is worth more than 1

n
with respect to his/her true valuation.

To see 2), suppose agent 1 reports f ′
1. Since the moving-knife procedure is proportional, regardless of

what the remaining n−1 agents report, agent 1 will receive an interval that has value at least 1
n
with respect

to f ′
1. By Lemma 6.1, agent 1 receives an interval that is worth at least 1

n
with respect to his/her true

valuation f1. This already shows that the moving-knife procedure is not risk-averse truthful.
We can further show that the procedure is not even weakly risk-averse truthful. Consider any f2, . . . , fn.

If agent 1 is not the last agent receiving an interval by reporting f1 truthfully, agent 1 receives exactly value
1
n
by the nature of the moving-knife procedure. Since we have shown that reporting f ′

1 also guarantees the
proportionality of agent 1, reporting f ′

1 will not harm agent 1. Suppose agent 1 is the last agent receiving
an interval by reporting f1 truthfully. Now, suppose agent 1 reports f ′

1. In each iteration of the procedure,
by Lemma 6.1, agent 1’s marked point for reporting f ′

1 is the same as, or on the right-hand side of, agent 1’s
marked point for reporting f1. This indicates that agent 1 will still be the last agent to receive an interval
when reporting f ′

1. Moreover, the first n − 1 points cut by the procedure will only depend on f2, . . . , fn.
Thus, when agent 1 reports f ′

1, agent 1 receives the same interval as it is in the case where agent 1 reports
f1. In this case, reporting f ′

1 does not harm agent 1 as well.

Theorem 6.3. Even-Paz algorithm is not risk-averse truthful.

Proof. Consider the scenario with n = 5 agents. Let f1(x) = 1 for x ∈ [0, 1] be the true value density
function for agent 1. We show that agent 1 can misreport his/her value density function to f ′

1 = r(5) that
satisfies 1) there exist f2, f3, f4, f5 such that v1(M1(f

′
1, f2, f3, f4, f5)) > v1(M1(f1, f2, f3, f4, f5)), and 2) for

any f2, f3, f4, f5, we have v1(M1(f
′
1, f2, f3, f4, f5)) ≥

1
5v1([0, 1]). Since Even-Paz algorithm is proportional,

Lemma 6.1 immediately implies 2). It remains to show 1).
Let ε > 0 be a small number less than 1

10 . Consider f2(x) = 1 on [0, ε) and f2(x) = 0 on [ε, 1], and
f3(x) = f4(x) = f5(x) = 0 on [0, 1− ε) and f3(x) = f4(x) = f5(x) = 1 on [1 − ε, 1]. We analyze two cases:
the case where agent 1 truthfully reports f1 and the case where agent 1 reports f ′

1. It is easy to verify that,
in both cases, after the first round of the algorithm, an allocation of [0, 1 − 3

5ε] to agent 1 and 2 is to be
decided, and an allocation of (1 − 3

5ε, 1] to agent 3, 4, 5 is to be decided. In the next round, the algorithm
will find the half-half point for each of agent 1 and 2 on [0, 1− 3

5ε], and the algorithm will cut at the median
of the two points, which is the average of the two points, and allocate the right-hand side interval to agent
1. By some simple calculations, the half-half point of f1 on [0, 1 − 3

5ε] is to the right of the half-half point
of f ′

1 on [0, 1− 3
5ε]. As a result, agent 1 will receives a larger length of interval if (s)he reports f ′

1. Since the
true value density function f1 is uniform, reporting f ′

1 will give agent 1 more utility.

To conclude this section, we present a mechanism/algorithm that is risk-averse truthful and proportional.
In particular, if we require the entire allocations, it is risk-averse truthful for hungry agents. The algorithm
is shown in Algorithm 3. Later, we will show that we can modify the algorithm by a little bit to make it
risk-averse truthful (without assuming the agents are hungry) if we do not require entire allocations (while
still guaranteeing proportionality and connected pieces).
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Algorithm 3 A risk-averse truthful proportional cake cutting algorithm with connected pieces

1: for each fi, find x
(i)
1 , . . . , x

(i)
n−1 such that

∫ xj+1

xj
fi(x)dx = 1

n

∫ 1

0
fi(x)dx for each j = 0, 1, . . . , n− 1, where

x
(i)
0 = 0 and x

(i)
n = 1

2: c0 ← 0
3: Unallocated← {1, . . . , n} // the set of agents who have not been allocated
4: for each j = 1, . . . , n− 1:

5: ij ← argmini∈Unallocated{x
(i)
j }

6: cj ← x
(ij)
j

7: allocate [cj−1, cj) to agent ij
8: Unallocated← Unallocated \ {ij}
9: endfor

10: allocate the remaining unallocated interval to the one remaining agent in Unallocated.

Theorem 6.4. Algorithm 3 is entire and proportional that always outputs allocations with connected pieces.

Proof. It is trivial that the algorithm is entire and always outputs allocations with connected pieces. It

remains to show the proportionality. It suffices to show that, in each iteration j, we have [x
(ij)
j−1, x

(ij)
j ) ⊆

[cj−1, cj) (notice that [x
(ij)
j−1, x

(ij)
j ) is worth exactly the proportional value for agent ij). Since x

(ij)
j = cj , it

suffices to show that x
(ij)
j−1 ≥ cj−1. In the (j − 1)-th iteration, agent ij is still in the set Unallocated. Since

ij−1 is the agent i in Unallocated with minimum x
(i)
j−1, we have x

(ij)
j−1 ≥ x

(ij−1)
j−1 = cj−1.

Theorem 6.5. Algorithm 3 is risk-averse truthful for hungry agents.

Proof. Without loss of generality, we consider the potential misreport for agent 1. Let f1 be agent 1’s

true value density function, and consider an arbitrary f ′
1. If the values for x

(1)
1 , . . . , x

(1)
n−1 (in Step 1 of the

algorithm) are the same for f1 and f ′
1, the algorithm will output the same allocation for f1 and f ′

1. In this
case reporting f ′

1 is not strictly more beneficial. We will conclude the proof by showing that, if the values

for x
(1)
1 , . . . , x

(1)
n−1 are not the same for f1 and f ′

1, there exists f2, . . . , fn such that agent 1 will receive an
interval with value less than the proportional value (with respect to the true valuation f1).

Suppose j∗ is the minimum index such that x
(1)
j∗ is not the same for f1 and f ′

1. Let y be the value of x
(1)
j∗

for f1 and y′ be the value of x
(1)
j∗ for f ′

1. We consider two cases: y′ < y and y′ > y. Let ε > 0 be a sufficiently
small number.

Suppose y′ < y. We can construct f2, . . . , fn such that 1) for each j = 1, . . . , j∗ − 1, cj = x
(1)
j − ε,

and 2) cj∗ = y′. In this case, agent 1 will receive [x
(1)
j∗−1 − ε, y′). When ε → 0, this interval converges to

[x
(1)
j∗−1, y

′], which is a proper subset of [x
(1)
j∗−1, y). We know that [x

(1)
j∗−1, y) is just enough to guarantee the

proportionality for agent 1. Agent 1 receives an interval with a value less than the proportional value by
reporting f ′

1, if ε is small enough.

Suppose y′ > y. Since each of the intervals [x
(1)
0 , x

(1)
1 ), . . . , [x

(1)
j∗−2, x

(1)
j∗−1) is worth exactly 1

n
v1([0, 1])

and the interval [x
(1)
j∗−1, y

′) is worth strictly more than 1
n
v1([0, 1]), the interval [y′, 1] is worth less than

n−j∗

n
v1([0, 1]). It is possible to find yj∗+1, . . . , yn−1 such that [yj , yj+1) is worth strictly less than 1

n
v1([0, 1])

for each j = j∗, . . . , n − 1, where we let yj∗ = y′ and yn = 1. Now we construct f2, . . . , fn such that 1)

cj = x
(1)
j − ε for each j = 1, . . . , j∗ − 1, 2) cj∗ = y′ − ε, and 3) mini x

(i)
j = yj for each j = j∗ + 1, . . . , n− 1.

It is easy to see that agent 1 will receive an interval that is a subset of one of [yj∗ , yj∗+1), . . . , [yn−1, 1].
Therefore, agent 1 will receive a value less than the proportional value in this case.

If the agents are not hungry, it is possible that the set of points x
(i)
1 , . . . , x

(i)
n−1 satisfying the condition in

Step 1 is not unique. Different selection of this set may result in different allocations. An agent can select

this set (by reporting an f ′
i with x

(i)
1 , . . . , x

(i)
n−1 being exactly what (s)he want) and potentially receive a

better allocation. However, in the case this agent do not know other agents’ valuations, it is equal likely
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that an agent’s selection is not as good as the algorithm’s default selection. Therefore, Algorithm 3 is still
weakly risk-averse truthful for agents that are not necessarily hungry.

It is possible to get rid of the hungry agents assumption. The trick is to make sure that each agent

i receives exactly one of [0, x
(1)
1 ), [x

(1)
1 , x

(1)
2 ), . . . , [x

(1)
n−1, 1]. In this case, as long as an agent select a set

x
(i)
1 , . . . , x

(i)
n−1 that satisfies the condition in Step 1, (s)he will get exactly his/her proportional share. Of

course, if (s)he select a set x
(i)
1 , . . . , x

(i)
n−1 that does not satisfy the condition, the same arguments in the proof

of Theorem 6.5 show that there is always a scenario that (s)he will receive a value less than the proportional
value. These prove the theorem below, which are stated with the formal proof left to the readers.

Theorem 6.6. If changing Step 7 of Algorithm 3 to “allocate [x
(ij)
j−1, cj) to agent ij”, Algorithm 3 is risk-

averse truthful and proportional (but not entire).

7 Conclusion and Future Work

We have proved that truthful proportional cake cutting mechanism does not exist, even in the restrictive
setting with two agents whose value density functions are piecewise-constant and strictly positive. The
impossibility result extends to the setting where it is not required that the entire cake needs to be allocated.
This resolves the long standing fundamental open problem in the cake cutting literature.

To circumvent this impossibility result and provide a solution that has certain degree of truthfulness in
practice, we have proposed a new truthful notion called risk-averse truthfulness, which is motivated by the
strategy-proofness that the I-cut-you-choose mechanism possesses. We have shown that some well-known
cake cutting algorithms do not satisfy this truthful criterion, and we have provided a risk-averse truthful
envy-free mechanism, and a risk-averse truthful proportional mechanism with connected pieces.

Below, we discuss a few future directions in this area.
We have proved the impossibility result on truthful proportional mechanisms with n = 2. Although this

implies such mechanisms do not exist in general, it still make senses to consider this problem with a fixed
number of agents that is more than 2. The author conjectures that the impossibility result holds for any
fixed n ≥ 2.

Open Problem 1. Does there exist a positive integer n ≥ 3 such that there exists a truthful proportional
mechanism with n agents?

On the other hand, we can relax the proportionality requirement, and instead consider α-approximation
of proportionality.

Open Problem 2. Does there exist an α > 0 such that there exists a truthful, α-approximately proportional
mechanism?

Indeed, the author does not even know the existence of a truthful mechanism that guaranteeing each
agent a positive value. If the answer to the following open problem is no, we have the same impossibility
result as the result of Brânzei and Miltersen [11] for Robertson-Webb query model.

Open Problem 3. Does there exist a truthful mechanism that always allocates each agent a subset on
which the agent has a positive value?

Of course, if agents are hungry, the answer to the problem above is yes, as the mechanism can just
allocate [0, 1] to the agents such that each agent receives a length of 1

n
, disregarding the agents’ reports.

Empirical Studies We have proposed two mechanisms that are risk-averse truthful. It is also interesting
to test them empirically by simulations or sociological experiments, and compare the performances of them
with other classical algorithms such as the moving-knife procedure and Even-Paz algorithm.
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